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The confined motion of a charged microparticle within the Paul Trap (also known as the electro-
dynamic levitator trap) in an atmosphere near the standard temperature T and pressure P, is studied
both theoretically and experimentally. The suggested theoretical model is based on the Mathieu
differential equation with damping term and stochastic source. This equation describes the damped mi-
croparticle motion subjected to the combined periodic parametric and random external excitations. To
solve the equation in an experimentally investigated regime of extremely strong damping and periodic
excitations, the singular perturbation theory (WKB theory) is applied. In order to compare experimen-
tal data obtained in the long-time imaging limit with an analytical solution obtained for the autocorrela-
tion function, the last is averaged by employing the Bogoliubov general averaging principle. This com-
parison is performed in terms of the standard deviation of the microparticle confined stochastic motion.
It results almost in the perfect agreement between the analytical result and the data obtained experimen-
tally in an entire region of the investigated experimental parameters. The only theoretical restrictions
imposed on the model parameters are 1/a<<1 and 4B/a?<<1 (where a and B are the dimensionless
drag and drive parameters). It is discovered both experimentally and theoretically that there is a
minimum equal to [8kT/(mw?)]'/? in the standard deviation of the microparticle confined stochastic
motion (m is the microparticle mass and o is the drive force frequency). The presence of this minimum,
which takes place at B~ 1.518a, reduces the thermal noise effects, providing unique opportunities for the
spectroscopic studies. Comparison with the numerical simulation schemes developed in papers [Arnold,
Folan, and Korn, J. Appl. Phys. 74, 4291 (1993); Blatt et al., Z. Phys. D 4, 121 (1986); Zerbe, Jung, and
Hanggi, Phys. Rev. E 49, 3626 (1994)] is discussed.
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I. INTRODUCTION

The spectroscopy of an electrodynamically confined
microparticle is a rapidly growing field. Infrared [1],
fluorescence [2,3], Raman [4], and photoemission [5]
spectroscopies of such microparticles have been demon-
strated and have provided new opportunities in the study
of chemical physics of isolated microparticles by spec-
troscopy [6]. There has been a great deal of attention
paid to the dynamical limitations in confinement of indi-
vidual subatomic charged particles in the Penning traps
[7,8] and of atomic ions in the Paul traps [9,10] in vacu-
um. However, corresponding studies of trapping and lev-
itation of a charged microparticle within the Paul trap
[also known as the electromagnetic levitator trap (ELT)]
in an atmosphere near standard temperature and pressure
(STP) [11,12] have received little attention. Experimental
and numerical analyses of stability in trapping were per-
formed in [12,13]. In these papers numerical analysis of
the solution stability of the standard Mathieu equation
was investigated with respect to the measurable experi-
mental parameters.

Recently the ELT with an atmospheric environment
has been successfully applied to the study of nucleation
and crystallization [14—-17] phenomena in supersaturated
electrolyte and nonelectrolyte solutions. The ELT
confined microdroplets of supersaturated solutions give a
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unique opportunity to study homogeneous nucleation and
crystallization, since such microdroplets are container-
less. This provides good opportunities to verify the main
concepts of homogeneous nucleation, as well as to study
the metastable state in solutions by achieving the very
high solute supersaturation inside of the containerless
levitated microdroplets.

In [18] the problem of dynamic confinement of an elec-
trically charged microparticle in the ELT in the atmo-
sphere near the STP received a different level of treat-
ment. The authors suggested taking into account the fact
that the trapped microparticle is continuously and ran-
domly “kicked” by atmospheric molecules. This sugges-
tion was implemented by including a white noise term as
a source term in the Matheiu differential equation with
damping term accounting for the presence of the atmo-
sphere. The Langevin equation introduced in this way
describes damped microparticle motion subjected to the
combined parametric and random external excitations.
Therefore, the understanding of the ELT confined micro-
particle motion in an atmosphere near the ELT null point
was considerably improved and associated with the
Brownian parametric oscillator [19]. Furthermore, in

-[18] the effect of these continuous random collisions (fluc-

tuations) on long-time imaging was investigated experi-
mentally. A comparison between numerical calculations
arising from the Langevin equation and imaging led the
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authors [18] to conclude that the width of imaged points
could not be described without including the stochastic
force, in accordance with the fluctuation-dissipation
theorem [20]. In fact, the numerical calculations using
the linear Langevin equation and the experimental mea-
surements were in good agreement [18]. Another at-
tempt to numerically solve the problem was undertaken
in [19,21] in which the initial Mathieu equation with a
damping term and stochastic source was substituted by
the corresponding deterministic Fokker-Planck equation.
Recent comparison of the numerically evaluated Fokker-
Planck equation [19,21] with the available experimental
data (see [18] and this paper) demonstrated good agree-
ment. In [22] an attempt to solve the problem analytical-
ly was carried out. In this paper an original ansatz to
solve the Mathieu equation with damping term and sto-
chastic source was worked out. The results obtained in
the long-time imaging limit demonstrated agreement with
experiment only under some specific constraints imposed
on the drag and drive parameters.

In spite of the significant interest paid to the dynamics
of the ELT confined microparticles during the last ten
years, there is still no comprehensive analytical solution
to the problem, since the solution presented in [22] has a
restricted applicability. In this paper an attempt to build
up such a comprehensive analytical solution is presented.
The current work can be considered as complementary to
our recent analytical results achieved in [22] and consists
in an analytical description of the motion of the ELT
confined microparticle in an atmosphere near the SPT.

In Sec. II we describe our experimental setup and pro-
cedure. In Sec. III we introduce and define an equation
describing the confined microparticle stochastic motion.
The detailed procedure of its solution by means of the
singular perturbation theory (WKB theory) [23,24] is
presented in Sec. IV. In Sec. V an analytical expression
for the autocorrelation function of the microparticle
confined stochastic motion is derived. In Sec. VI, its
analysis is given in the long-time imaging limit. In that
section we also derive an expression for the standard de-
viation of the microparticle motion in the long-time im-
aging limit. We conclude the paper by introducing the
concept of the minimum standard deviation of the micro-
particle confined stochastic motion. The conditions un-
der which this minimum can be achieved are derived.
This gives us a knowledge of the regime where the
thermal noise effect is considerably reduced, providing
new opportunities for the spectroscopic studies of the
ELT confined microparticles. A comparison of the
analytical results obtained in the paper with various nu-
merical simulation schemes is presented and followed by
a summary.

II. EXPERIMENTAL SETUP

The experiments in [18] were performed over a limited
range of the drag and drive force parameters range.
However, as will be observed both experimentally and
theoretically, a curious minimum occurs in the time-
averaged positional variance of the microparticle
confined stochastic motion as the drive potential on the
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Paul trap is increased. The original experiments [18]
only extended to a region within this minimum. In order
to elucidate the character of the physics beyond this
point we decided to extend these experiments. In what
follows, for the sake of completeness we provide a brief
review of the experimental method described in [18].

All experiments were performed at 294.0 K and 1 atm.
The experimental setup for microparticle experiments
known as an aerosol particle microscope [25] is shown in
Fig. 1 [18,22]. Spherical polystyrene electrically charged
microparticles with a nominal radius of 3.0 um were gen-
erated from a negatively charged hydrosol droplet [26]
using a single particle jet [3], and injected into the ELT.
After the parent liquid microdroplet dried, leaving
behind the polystyrene microparticle, the chamber sur-
rounding the ELT was sealed. The ELT, which has the
characteristic dimension z,=4.5 mm, consists of three
electrodes. The top and bottom electrodes are hyper-
boloids of revolution spaced by 2z,, and the center elec-
trode is a torus having a hyperbolic cross section [10].
The periodic drive potential V' cos(wt) at 60 Hz is ap-
plied to the torus relative to the top and bottom elec-
trodes. Therefore, a nearly perfect oscillating quadrupole
potential ®(r,z;¢) is produced,

2.2
@ (rz;)=V, %—2—24;59— cos(t) , (1)
0

where p is the cylindrical coordinate (p’=x2+y?). In
addition a constant potential difference V. is divided
equally between the top and center, and center and bot-
tom electrodes in order to produce a static interior poten-
tial @4 (r,z). This potential balances gravity at the ELT
null point. Two pin electrodes were placed in the torus
and electrified in order to cancel any horizontal stray
static field at the ELT center [22].

The ELT confined and stochastically moving micro-
particle was illuminated horizontally, and vertically by a
vertically polarized beam from a semiconductor laser
(635 um). Long-time images (50-100 sec) of an individu-
al glare spot [18] were recorded on an integrating
charge-coupled device camera through microscopes view-
ing along the y (horizontal) and z (vertical) axes. The nu-
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FIG. 1. Experimental setup.
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merical aperture of the objective lens was 0.4. The major
interest was in measuring the positional variance of these
images as a function of the drive potential on the ELT.

III. LANGEVIN EQUATION FOR THE ELT
CONFINED ELECTRICALLY CHARGED
MICROPARTICLE

A spherical electrically charged microparticle injected
into a gaseous atmosphere is pulled to the ELT center by
alternating gradient forces, as illustrated in Fig. 1.
Therefore, the dynamic equation for the microparticle
deterministic motion around the ELT null point is de-
scribed by Newton’s second law,

d’r dr _
m:i‘t“2‘+f-(‘1t—+anc—0 , (2)

where m and g are the microparticle mass and electric
charge, respectively; r is the particle radial position vec-
tor; and f is the Stokes drag coefficient. In our experi-
ments we are principally interested in viewing the parti-
cle motion from the top (xy plane) or the side (e.g., zx
plane) directions. Equation (2) easily separates into simi-
lar independent equations along the z axis and perpendic-
ular to it. We restrict our interest for the moment to the
motion along the z axis for which the following dynamic
equation can be derived from expression (1) and Eq. (2),

d2(t) | ,dz(t) 4V B
i +f i 22 cos(wt )z(2)=0 . (3)

This equation has the form of the Mathieu equation with
damping. In a region of stability z(z) is asymptotically
stable, i.e., damps exponentially with time ¢ [27,28]. This
means that the particle, described by Eq. (3), eventually
settles to the ELT center and does not move. However, it
is easily observable in experiments that the particle does
not settle to rest but randomly moves around the ELT
null point [18]. This means that Eq. (3) is not complete
and should be supplemented with a random source term
to account for positional fluctuations in the microparticle
motion near the ELT null point. These fluctuations take
place due to continuously and randomly occurring col-
lisions between the microparticle and atmospheric mole-
cules. One can come to the same conclusion from the
fluctuation-dissipation theorem [20], which states that in-
troduction of a dissipative force (i.e., drag) requires
simultaneous introduction of the corresponding random
force R (t) in the form of a source term. Thus, Eq. (3)
should be rewritten as the following Langevin equation:

a2 | odz(t) 4V,
dt? dt z3

+f cos(wt)z(t)=R(1) . 4)

This equation defines the time evolution of the confined
microparticle vertical position z =z(¢) as a random pro-
cess subjected to the damping and periodic parametric
excitations [18]. In this paper we consider the particular
case in which the random process z (¢) corresponds to the
Brownian parametric oscillator, i.e., is the Markov pro-
cess (the process without an aftereffect). Therefore, the
random force R (¢) can also be defined as the Markov
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process. For the sake of simplicity, an additional restric-
tion that the Markov process R (?) is the stationary zero-
mean §-correlated one is imposed. Thus, the process
R (1) is the zero-mean white noise that can be completely
characterized by the following one-time P,(z) and the
two-time conditional P,(¢,,?,) probability densities (i.e,
by the fluctuation-dissipation theorem relations):

P, (t)=(R(1))=0,

(5
P2(t1,t2):(R(tl)R(t2)>:0'28(t1 _tz) ,

where ( ) denotes an ensemble average, and 02=2k8 Tf
is the white noise variance [20].

Introducing the new variable x(7)=z(wt/2), Eq. (4)
can be rewritten as [18]

d*x(7) +a dx (1)
dr? dr

where

—Bcos(2T)x(7)=F(1) , (6)

4qV,
a=—" ’ :—2 b
mo m(zyw)

x(1t)=z =z(t),

4

F(r)= 3 2r
mo

4]

R

In Eq. (6) we have introduced the dimensionless drag a
and drive 8 parameters together with the new dimension-
less independent variable r=wt /2.

IV. SOLUTION OF THE LANGEVIN EQUATION
FOR THE ELT CONFINED ELECTRICALLY
CHARGED MICROPARTICLE

It is usually the case that the parameters a and S of Eq.
(6) are much greater than 1 [for example, in our experi-
ments @a=45.37>>1 and BC(10,300)>>1]. Therefore,
Langevin equation (6) is the singularly perturbed linear
inhomogeneous differential equation, which we rewrite as
follows:

d*x(7) dx (1)
2
& d1'2 & dr

where e=1/a is the small parameter and 8'=8/a®. The
solution of this linear inhomogeneous differential equa-
tion can be obtained in terms of the Green function
G(7,7'),

x(r)=¢€* [ d7'G(r,7)F(T) . (8)

B'cos(27)x(7)=€>F(1) , (7)

The introduced Green function G (7,7') satisfies the fol-
lowing linear differential inhomogeneous equation:
d*G(r,7') dG (r,7')
2 > )
+ J—
€ dr? € dr

B'cos(27)G(T,7")

=8(r—7"). (9

The boundary conditions imposed on the function
G(7,7') are G(L£ o ,7')=0, i.e, the function G (7,7') is as-
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sumed to be asymptotically stable. In order to satisfy
these conditions the Green function G(7,7’) should take
the form

G(r,7")=G (r,7)0(r— 1)+ G _(1,7)0(7" — 1) , (10)

where G, (o,7')=0, G_(— o,7')=0 and 6(7'—7) is the
symmetric unit-step function.

We start considering the homogeneous equation for
G, (1,7),

d*G  (r,7')
g2 hs +e

dr*

dG  (7,7")
dr

—pB'cos(27)G  (1,7')=0 .

(11)

In this equation the highest derivative is multiplied by
the small parameter €2. Therefore, in order to solve this
singularly perturbed equation, the singular perturbation
theory (the WKB theory) [23,24] should be applied. The
WXKB solution of Eq. (11) is sought in the form

G, (1,7 )=A4 (7' )exp l% > ™S, (1) | . (12)
n=0

J

Y ’
() (r—7")+ B

G+(T,TI):B+(TI)eXP 2¢ m

sin(2r—A)+o[(B)?*]
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Substitution of this expression into Eq. (11) leads to the
following set of equations for the functions S,(7):

dsy(r) |° ds,(r)
+ =p'cos(27) , (13a)
dr dr
d’s,,(7) n dS, (1) dSy, 41— m(T)
dr? e, dTt dr
ds,, +1(7)
+ 2T g w20, (13b)
dr
dZSZn_l(T) 2n dSm(T) dSzn_m(T) dSzn(T)
dr? +m2=0 dr dr + dr
n=>1. (13¢)

Solving the above equations we assume that the parame-
ter 43’ is small (8’ << 1 or B << a?/4). This allows one to
neglect all the terms proportional to (B')", where n >2.
Therefore, by carrying out straightforward but cumber-
some calculations one can obtain the function G (7,7')
in the form

) (14a)

where A=tan"!(2¢). Performing the same calculations for the function G _(r,7’) leads to the following expression:

G_(r,7")=B _(7')exp

(BI)Z , Br
Bl —E
2 T 2eV/Trae

It is easy to verify that the functions G (7,7') and
G _(7,7') satisfy the boundary conditions specified in the
definition of expression (10).

The next step is to define the functions B (7') and
B _(7'). This can be done by patching. There are two
patching conditions. First, it is required that the func-
tion G(7,7’) be continuous when 7— 7,

lim |G T'+§—,r' -G_ T'—le,f' =0, (15a)

where 7=7'+p/2 for 7>7" and 7=7"—p/2 for 7<7.
This condition implies that B (7')=B_(7')=B(1').
Second, integrating Eq. (11) from 7=7'—p/2 to
7=7+p/2 and letting p—0, we obtain the following
equation:

]

sin(2‘r—A)+o[(E')2]] . (14b)
[
oG T'+'§,T’ oG _ T'—‘R,T'
- _1
’1’1—% 9 dp S
(15b)
The solution of this equation is
CPyY
Br)= V1+4e
2ef'cos(27'—A)
B’ : ’ r\2
Xexp | ———=sin(27' —A)+o[(B’) .
P 2evit4e LB ]l
(16)

Thus, by means of expressions (14a), (14b), and (16) the
Green functions G, (7,7') and G _(7,7') are completely
determined:

V'1+4¢? (B')? B . o 2
= - —)+ —E[sin(27—A)—sin(27' —A)]+o[(B)?] | , (17a)
G, (r,7) 2eB’cos(27-’—A)exP e (r—7")+ Y ey [sin(27 )—sin(27 ]+o[(B')*]
G (rry=—Yt4e? N B b B [sin(2r—A)—sin(2r—A)]+o[(B)] | . (17b)
- 2ef’cos(27' —A) 2e 26V 1+ 4¢2
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Let us note that

G T'+%,T' =G, T'+§,T'
r=A 7=A
=—-G T'+£,T'
2 7=m/2
=—G4 [T"FR,T' N
2 7=m/2
G T’—B',T' =G_ T’—ﬂ,r'
2 7=A 2 r=A
=—G T'—E,T’
2 T=m/2
=—G_ T'—B—,T'
2 r=m/2

This allows us to express displacement (8) as
x(2n)=¢?["d7G(2r,7)F(r') . (18)
24

In the above expressions F(7) is the 8-correlated zero-
mean white noise,

(F(1))=0, (F(1)F(1,))=0T8(1,—7,), (19)

where '=802%/(m20?).

_ Te? 2
Wty m)= Ce“[1+4e”]

_®B” B o
lexp[ 2% (r+7)+ ZEVT:F_ZS—Z[S"I(ZTl A)+sin(21,—A)]
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V. AUTOCORRELATION FUNCTION OF THE ELT
CONFINED ELECTRICALLY CHARGED
MICROPARTICLE

The autocorrelation function W (r,7,) which defines
the conditional probability for the Markov process x(7),
introduced in Sec. II, is given by the expression

W (T, 1) ={x(21,)x(27,)) . (20)

Substituting into this relation expressions for x(27,) and
x(27,) given by Eq. (18) and utilizing relation (19), it is
straightforward to demonstrate that for the case 7,> 7,
there is the following expressions for the function
W(r,7):

2T
W(r,7,)=T¢* f_:Adﬂr'G+(2'rl,7")G+ (275, 7")

2T
+ [ ldrG (27, 7)G _(2ry,7")
27‘2

+ 2’: dr'G_(2r,7)G_(215,7) | .
1

(21)

The following step in determining the function W(r,7,)
requires substitution into relation (21) of expressions (17a)
and (17b) found for the Green functions G (27,7') and
G (271,,7'), respectively. This provides

(231)2
7\2 4
exp () 7 — B sin(7' —A)
2m € eV 1+4¢?
x [ “ar -
24 cos(7'—A)
(B B . .
+exp | — (1y— 7))+ ———="[sin(27;—A) +sin(27,—A)]
P T (TR T ' 2
B -
exp | — ————=sin(7"—A)
szrl dv Pl evirae
~20, 7 cos’ (7' —A)
(B')? B . .
+ex (114 7,)+ ——F——="[sin(27;—A)+sin(27,—A)]
Pl I e : 2
AV ’
exp | — (B') 7= B sin(7' —A)
x [ ar € eV 1+4€2
T
27 cos¥(7'—A)

Now we take into account that integrands in the above expression are products of the slowly varying exp[+(8')*+' /€]

and fast varying exp{B'sin(7’'—A)/[e(1+4€?)!/2]} exponential factors.

Therefore, introducing the notations

7,=7+p/2 and T,=T7—p /2, the expression for the function W (r+p/2,7—p/2) can be reduced to the form
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Le?[1+4€] (B')? B'cos(p) .
wir+ 2 -2 |=2EL T2 1, - sin(2r—A)
2 2 (28')? 2 eV 1+4¢?
BI
€xX —_—
- i Yy
X [Tdr : (22)
24 cos“(7'—A)
In order to carry out integration in this expression we employ the following Fourier decomposition [28]:
B o B < . B in(—A) —in(r'—A)
exp | —————=sin(7" —A) |=I) | ——— |+ (=", | ——— |[e"™" +(—1)% "7 1, (23)
eV 1+4¢ Vit | T2 " | eV1+4e?

where I,(y) is the modified Bessel function of order n.
Taking into account that the ratio d,(y)=1,(y)/I,(y)
for n 2 1 can be expanded asymptotically as

—n?/2y
’

dn(')/)ly_,()z ’ dn(’y)]yaoo=e

2"n!
it is straightforward to conclude that 0<<d,(y)<<1 for
¥ C(0, ). In the investigated range of the experimental
parameters €e=1/a and f'=p/ a?, their combination
B'/(eV'1+4€?) <<3. Thus, a good approximation for the
Fourier decomposition (23) is constructed by using only
its first term. Finally, we obtain the autocorrelation func-
tion W(r+p/2,7—p/2) in the form

_Te[1+4e’] _p22e)p

w
(B)?

4L B
T T

BI

X.I T —
o | eV 1+4e?

B'cos(p) .
Xex sin(2r—A) | .
P l eV 1+4¢? ]

(24)

VI. COMPARISON WITH THE LONG-TIME
IMAGING EXPERIMENT AND NUMERICAL
SIMULATIONS

As it has been stated in Sec. II, we are interested in the
limiting case corresponding to long-time imaging. In this
case the resulting microparticle image is obtained by a
continuous recording of its images within a long-time ex-
posure (=100 s) of the camera. The analytical quantity
corresponding to the experimentally observed variance
W expt(0) of the microparticle confined stochastic motion
in the long-time imaging limit can be obtained by apply-
ing the Bogoliubov general averaging principle [22,29].
According to this principle in the long-time (¢t =27/w)
limit the autocorrelation function W(r+p/2,7—p/2)
can be approximated uniformly and arbitrary closely by
its average W (p) over the time interval [0, 7],

'7'4-9—,7'—E

> > | (25)

S
wipy=— [ "drw

Carrying out calculations prescribed by relation (25) and
restoring the initial notations [see relation (6)] we obtain
W (p) in the form

FIG. 2. Comparative plot of the standard
deviation of the ELT confined microparticle
N stochastic motion Z.,, derived analytically
] ( ), Zexpe Obtained experimentally (@,
] viewing along z axis [18]; #, viewing along y
~ axis), and =,,,(L) obtained in [18] by numeri-
] cally simulating the initial Langevin equation
] (O) and =,,,,(FP) obtained by numerical simu-
] lation of the Fokker-Planck equation ({). The
comparison has been performed for the drag
parameter a=45.37 in the N, atmosphere
near STP. Image recording was along the y
axis (B, =B, /2).

100 150 200

250
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W(p)=r(a—2_)"4_)_e —(13"’/2z:z3)plo Bceos(p)
op? Vial+a
B
XTIy | — | . 26)
° Val+4
Comparison of the standard deviation I ipeory= W (0)

obtained _theoretically with the

standard deviation
Eexp::\/ W expt(0) observed experimentally is given in
Fig. 2, which demonstrates a remarkable agreement be-
tween the theory developed in this paper and the experi-
mental data obtained in a wide region (10—300) of the pa-
rameter 3 (drive force amplitude). As it has been noticed
in Sec. I, there is a minimum in the positional variance
of the microparticle confined stochastic motion (see Fig.
2) that has been clearly observed in our experiments. The
existence of this minimum follows also from the analyti-
cal result (26) obtained in this paper. An investigation of
the function W (0) minimum with respect to the drive pa-
rameter 8 shows that this minimum W _; (0) takes place
if
Bmin

Va*+4
This provides expressions for the function W ;. (0) and
the parameter S3,;, in the form

r _ 8T

Wmin(0)=;— ma)z ’

I,(y)=y, withy= (27)

Boin=1.518Va’+4 .

It is noteworthy that W_; (0) is dependent only of the
microparticle mass m and the drive frequency w. Numer-
ical evaluation of W_,; (0) and B, for the drag parame-
ter a=45.37 leads to W_;,(0)=1.38 pum and
Bmin=068.94. These theoretical predictions are in the
very good agreement with the minimum of positional
variance observed experimentally (see Fig. 2). The ex-
istence of such a minimum in the positional variance of
the microparticle confined stochastic motion is of consid-
erable importance since one can significantly reduce the
thermal noise effect on the positional uncertainty of the
microparticle motion. This provides new opportunities
for the spectroscopic studies of the ELT levitated micro-
particles in an atmosphere.

In [18] an original numerical simulation scheme for Eq.
(6) was developed. In this scheme it was suggested to sub-
stitute Eq. (9) for the Green function G(7,7’) by the fol-
lowing one:

2
82 d h¢(T,0) +€ dh¢(7',0)

dr dr

—B'cos(27+¢)h 4(7,0)

=8(r). (28)

In this equation the quantity ¢ is a random phase. The
introduction of this phase is physically justified, since it
accounts for the randomly occurring collisions between
the microparticle and atmospheric molecules. It is easy
to demonstrate that substituting the independent variable
7 by 7—¢ /2 one can obtain Eq. (28) in the form (9) with
the variable 7' =¢ /2 fixed. This observation is impor-
tant, since it allows one to identify the Green function
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h ¢(~r,0) introduced by Eq. (28) with the function
G (7,¢/2) obtained in this paper [see expressions (10),
(14a), and (14b)]. Therefore integration over the indepen-
dent variable 7" in Eq. (21) for the autocorrelation func-
tion W(r,7,), together with accounting for the continu-
ously and randomly occurring collisions between the mi-
croparticle and atmospheric molecules, can be interpret-
ed as averaging over the random phase ¢. However,
since the separately taken Eq. (28) does not imply the
presence of the stationary stochastic source in the right
hand of the underlying Eq. (6), it was assumed in [18]
that the Green function h¢(7',0) is 7-shift invariant in the
long-time limit, which was associated in paper [18] with
the establishment of thermodynamic equilibrium. Hav-
ing this assumption in mind it is straightforward to
demonstrate that in terms of the Green function h¢(7',0)
the variance W, (0) of the microparticle confined sto-
chastic motion can be represented in the form [18]

80’2 © 2 >
dthy(1,0)) . (29
m2w3<f0 ThglT . )

In this expression { ) ¢ denotes averaging over the ran-
dom phase ¢. Numerical analysis of the standard devia-
tion 3,um(L)=V W_,(0) given by expression (29)
demonstrates remarkable agreement between the
prescription given by Eq. (29) and the analytical result
(25) obtained in this paper (see Fig. 2). Such an agree-
ment provides justification to the very strong and useful
statement, “In the linear problems with stochastic source
and parameters independent and dependent periodically
on time, the averaging over equilibrium ensemble in the
long-time limit is equivalent to the averaging over random
phase shift.” This very interesting statement looks like an
ergodic theorem [20], in which time is substituted by a
random phase shift. Its more general justification re-
quires further investigations of the linear differential
equations with periodic parameters and stochastic
source.

In [19,21] the initial second-order linear stochastic
differential equation (6) was substituted by the corre-
sponding nonstationary deterministic Fokker-Planck
equation for the conditional probability density. The sys-
tem of linear differential equations presented in these pa-
pers for the covariance matrix components was numeri-
cally analyzed. We performed the same numerical
analysis of this system for the drag and drive parameters
corresponding to our experiments. In what follows nu-
merical simulation of the Fokker-Planck equation for the
covariance matrix also gives good correspondence with
experiment (see Fig. 2) in terms of the simulated standard
deviation ¥ .., (FP). However, our recent measurements
of the conditional probability density P,[x(7,),x(z,)] for
the microparticle to be located at x(z,) at the time in-
stant ¢, if at the time instant ¢, (¢, <t;) it was located at
x(t,) in the long-time imaging limit demonstrated that
the function P,[x(¢;),x(¢,)] was not Gaussian in the re-
gion where S=>300. This experimental observation al-
lows us to conclude that in the region of experimental pa-
rameters where 8>250 the Fokker-Planck formalism is
not applicable, since it assumes that Gaussian form for

Wnum(0)=
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the function is an important conclusion P,[x(¢,),x(t;)].
In this region an alternative singular perturbation ap-
proach, similar to the one developed in this paper, with
respect to the large dimensionless parameter 3 should be
employed.
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